24819 measured reflections

 $R_{\rm int} = 0.047$

5239 independent reflections

4315 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-tert-Butylbenzyl)-2-(4-tert-butylphenyl)-1H-benzimidazole

Jian-Cheng Zhou,^{a,b}* Zheng-Yun Zhang,^a Nai-Xu Li^a and Chuan-Ming Zhang^a

^aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and ^bliangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China

Correspondence e-mail: jczhou@seu.edu.cn

Received 24 October 2009; accepted 30 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.061; wR factor = 0.135; data-to-parameter ratio = 17.3

In the molecule of the title compound, $C_{28}H_{32}N_2$, the benzimidazole ring system is almost planar [maximum deviation = 0.0221 (15) Å and forms dihedral angles of 85.86 (4) and 32.09 (6)° with the benzene rings. In the crystal structure, molecules are linked into chains running parallel to the *a* axis by intermolecular $C-H \cdots N$ hydrogen bonds. The methyl groups of a tert-butyl group are rotationally disordered over two positions with refined site-occupancy factors of 0.636 (4) and 0.364 (4).

Related literature

For the biological and pharmaceutical properties of benzimidazole derivatives, see: Matsuno et al. (2000). Garuti et al. (1999). For reference structural data, see: Allen et al. (1987).

Experimental

Crystal data

$C_{28}H_{32}N_2$ $M_r = 396.56$	V = 2288.0 (3) Å ³ Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 6.2142 (5) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 21.1112 (13) Å	T = 293 K
c = 17.4624 (12) Å	$0.20 \times 0.20 \times 0.10 \text{ mm}$
$\beta = 92.869 \ (6)^{\circ}$	

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.987, T_{\max} = 0.993$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	302 parameters
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
5239 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C18-H18A\cdots N2^{i}$	0.97	2.59	3.553 (2)	174

Symmetry code: (i) x - 1, y, z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was financially supported by the Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology Fund (No. 200813).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2378).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Garuti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525-2530
- Matsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778-1781.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o3019 [doi:10.1107/S1600536809045668]

1-(4-tert-Butylbenzyl)-2-(4-tert-butylphenyl)-1H-benzimidazole

J.-C. Zhou, Z.-Y. Zhang, N.-X. Li and C.-M. Zhang

Comment

Imidazole and benzimidazole derivatives are important heteroaromatic compounds which have attracted great attention due to their biological and pharmaceutical activities (Matsuno *et al.*, 2000; Garuti *et al.*, 1999). These compounds have also played an important role in the development of coordination chemistry. In this paper, we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The benzimidazole ring system is substantially planar, with a maximum displacement of 0.0221 (15) Å for atom C1. The dihedral angle it forms with the C8—C13 and C19—C24 benzene rings are 32.09 (6) and 85.86 (4) Å, respectively. The benzene rings are oriented perpendicularly to each other, forming a dihedral angle of 89.58 (5) °. In the crystal packing, the molecule are linked into chains running parallel to the *a* axis by intermolecular C—H···N hydrogen bonds (Table 1). The methyl groups of a *tert*-butyl group exhibits rotational disorder over two orientations with site occupation factors of 0.636 (4) and 0.364 (4) for the major and minor components of disorder, respectively.

Experimental

To a solution of *o*-phenylenediamine (0.432 g, 4 mmol) in ethanol(20 ml), 4-*tert*-butylbenzaldehyde (1.297 g, 8 mmol) was added. The mixture was heated to reflux with stirring for four hour, then cooled to room temperature. The resultant solution was filtered and allowed to evaporate slowly at room temperature. Colourless single crystals of the title compound suitable for X-ray diffraction study were obtained after several weeks.

Refinement

The C15, C16 and C17 methyl carbon atoms of a *tert*-butyl group are rotationally disordered over two position with refined site occupancy factors of 0.636 (4) and 0.364 (4). All H atoms were located geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

1-(4-tert-Butylbenzyl)-2-(4-tert-butylphenyl)-1H- benzimidazole

Crystal data

C ₂₈ H ₃₂ N ₂	$F_{000} = 856$
$M_r = 396.56$	$D_{\rm x} = 1.151 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3426 reflections
a = 6.2142 (5) Å	$\theta = 2.3 - 27.5^{\circ}$
b = 21.1112 (13) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 17.4624 (12) Å	<i>T</i> = 293 K
$\beta = 92.869 \ (6)^{\circ}$	Block, colourless
$V = 2288.0 (3) \text{ Å}^3$	$0.20\times0.20\times0.10~mm$
Z = 4	

Data collection

Rigaku SCXmini diffractometer	5239 independent reflections
Radiation source: fine-focus sealed tube	4315 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293 K	$\theta_{\min} = 3.3^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: Multi-scan (CrystalClear; Rigaku, 2005)	<i>k</i> = −27→27
$T_{\min} = 0.987, \ T_{\max} = 0.993$	<i>l</i> = −22→22
24819 measured reflections	

Refinement

P ofinament on F^2	Secondary atom site location: difference Fourier man
Kermement on F	Secondary atom site rocation, anterence i ourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 0.936P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
5239 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
302 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Prin methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) \boldsymbol{Z} х y N1 0.7010(2) 0.0256(3) 0.17678 (6) 0.27399(7) N2 1.0343 (2) 0.14275 (6) 0.31033 (7) 0.0298 (3) C1 0.0270 (3) 0.7112 (3) 0.17535(7) 0.35346 (9) C2 0.5570(3)0.18846 (8) 0.40650(10) 0.0346(4)H2B 0.041* 0.4192 0.2021 0.3913 C3 0.18016 (9) 0.6195(3)0.48290 (10) 0.0392(4)0.047* H3A 0.5214 0.1884 0.5201 C4 0.8268 (3) 0.15961 (9) 0.50544 (10) 0.0382 (4) H4A 0.8632 0.1547 0.046* 0.5574 C5 0.9793 (3) 0.14633 (8) 0.45281 (10) 0.0344(4)0.041* H5A 1.1170 0.1328 0.4684 C6 0.9185 (3) 0.15411 (7) 0.37498 (9) 0.0282(3)C7 0.8992(2)0.15635 (7) 0.25137 (9) 0.0258 (3) C8 0.17169 (9) 0.9583 (2) 0.14654 (7) 0.0272 (3) C9 0.8876 (3) 0.18418 (8) 0.10959 (9) 0.0310(4) H9A 0.7887 0.2164 0.1168 0.037* C10 0.9638 (3) 0.17391 (9) 0.03713 (10) 0.0355 (4) H10A 0.9141 0.1995 0.043* -0.0033C11 1.1119 (3) 0.12648 (8) 0.02342 (10) 0.0344 (4) C12 1.1810(3) 0.08896 (8) 0.08579 (10) 0.0370(4) 1.2802 H12A 0.0568 0.0785 0.044* C13 1.1055 (3) 0.09845 (8) 0.15806 (10) 0.0335 (4) H13A 1.1537 0.0723 0.1982 0.040* C14 0.0424(5)1.1974 (3) 0.11519 (9) -0.05650(10)C15 1.4372 (5) 0.1228 (2) -0.0550(2)0.0569 (10) 0.636 (4) H15A 1.4726 0.1670 -0.05760.085* 0.636 (4) H15B 1.4930 0.1011 -0.09800.085* 0.636 (4) H15C 1.4996 0.1051 -0.00830.085* 0.636(4) C16 1.1017 (6) 0.16598 (17) -0.11722(17)0.0508 (9) 0.636 (4) H16A 0.9475 0.1625 -0.12120.076* 0.636(4) H16B 1.1587 0.1580 -0.16640.076* 0.636 (4) H16C 1.1414 0.2079 -0.10040.076* 0.636 (4) C17 1.1189 (8) 0.0513 (2) -0.0846(2)0.0687 (14) 0.636 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17A	0.9695	0.0541	-0.101	1	0.103*	0.636 (4)
H17B	1.1360	0.0209	-0.043	8	0.103*	0.636 (4)
H17C	1.2014	0.0381	-0.126	8	0.103*	0.636 (4)
C16'	1.3128 (12)	0.1723 (4)	-0.078	5 (4)	0.073 (2)	0.364 (4)
H16D	1.2128	0.2068	-0.085	1	0.109*	0.364 (4)
H16E	1.3811	0.1648	-0.125	8	0.109*	0.364 (4)
H16F	1.4201	0.1828	-0.039	1	0.109*	0.364 (4)
C15'	1.3773 (13)	0.0576 (4)	-0.052	4 (3)	0.077 (3)	0.364 (4)
H15D	1.3107	0.0193	-0.036	0	0.116*	0.364 (4)
H15E	1.4934	0.0688	-0.016	6	0.116*	0.364 (4)
H15F	1.4323	0.0514	-0.102	3	0.116*	0.364 (4)
C17'	1.0230 (11)	0.0946 (4)	-0.1102	2 (3)	0.0593 (19)	0.364 (4)
H17D	0.9132	0.1266	-0.113	7	0.089*	0.364 (4)
H17E	0.9627	0.0558	-0.092	2	0.089*	0.364 (4)
H17F	1.0787	0.0879	-0.159	8	0.089*	0.364 (4)
C18	0.5117 (2)	0.19700 (7)	0.2277	1 (9)	0.0276 (3)	
H18A	0.3834	0.1845	0.2533		0.033*	
H18B	0.5100	0.1753	0.1787		0.033*	
C19	0.5039 (2)	0.26793 (7)	0.21354	4 (8)	0.0244 (3)	
C20	0.6751 (3)	0.30771 (8)	0.2323	8 (10)	0.0345 (4)	
H20A	0.7992	0.2912	0.2568		0.041*	
C21	0.6647 (3)	0.37210 (8)	0.2154	5 (10)	0.0354 (4)	
H21A	0.7823	0.3976	0.2292		0.042*	
C22	0.4846 (2)	0.39941 (7)	0.1786	9 (9)	0.0255 (3)	
C23	0.3127 (3)	0.35908 (8)	0.1614	8 (11)	0.0380 (4)	
H23A	0.1875	0.3756	0.1379		0.046*	
C24	0.3214 (3)	0.29478 (8)	0.1782	7 (11)	0.0370 (4)	
H24A	0.2026	0.2694	0.1656		0.044*	
C25	0.4755 (3)	0.47028 (7)	0.1592;	5 (10)	0.0314 (4)	
C26	0.6985 (3)	0.49533 (9)	0.14043	3 (12)	0.0454 (5)	
H26A	0.7489	0.4729	0.0970		0.068*	
H26B	0.7974	0.4891	0.1838		0.068*	
H26C	0.6887	0.5397	0.1287		0.068*	
C27	0.3234 (3)	0.48367 (9)	0.0895	5 (12)	0.0474 (5)	
H27A	0.3723	0.4612	0.0459		0.071*	
H27B	0.3218	0.5283	0.0791		0.071*	
H27C	0.1806	0.4699	0.1000		0.071*	
C28	0.3968 (4)	0.50619 (9)	0.22849	9 (12)	0.0586 (6)	
H28A	0.2570	0.4909	0.2404		0.088*	
H28B	0.3882	0.5506	0.2168		0.088*	
H28C	0.4959	0.4997	0.2717		0.088*	
Atomic displa	acement parameters	(A^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0275 (7)	0.0240 (6)	0.0255 (7)	0.0003 (5)	0.0032 (5)	0.0028 (5)
N2	0.0303 (7)	0.0312 (7)	0.0280 (7)	0.0019 (5)	0.0030 (6)	0.0021 (6)
C1	0.0328 (8)	0.0225 (7)	0.0259 (8)	-0.0023 (6)	0.0048 (6)	0.0025 (6)

C2	0.0335 (9)	0.0364 (9)	0.0344 (9)	0.0014 (7)	0.0075 (7)	0.0009 (7)
C3	0.0449 (11)	0.0425 (10)	0.0311 (9)	-0.0027 (8)	0.0118 (8)	-0.0010 (8)
C4	0.0482 (11)	0.0403 (10)	0.0263 (9)	-0.0046 (8)	0.0030 (7)	0.0035 (7)
C5	0.0375 (9)	0.0350 (9)	0.0306 (9)	-0.0009 (7)	0.0007 (7)	0.0044 (7)
C6	0.0321 (8)	0.0255 (8)	0.0271 (8)	-0.0018 (6)	0.0038 (6)	0.0023 (6)
C7	0.0281 (8)	0.0217 (7)	0.0277 (8)	-0.0012 (6)	0.0038 (6)	0.0016 (6)
C8	0.0281 (8)	0.0261 (8)	0.0276 (8)	-0.0049 (6)	0.0029 (6)	-0.0006 (6)
C9	0.0323 (9)	0.0304 (8)	0.0303 (9)	-0.0015 (7)	0.0032 (7)	0.0001 (7)
C10	0.0395 (10)	0.0388 (9)	0.0282 (9)	-0.0057 (7)	0.0023 (7)	0.0015 (7)
C11	0.0351 (9)	0.0387 (9)	0.0300 (9)	-0.0102 (7)	0.0067 (7)	-0.0082 (7)
C12	0.0371 (10)	0.0354 (9)	0.0391 (10)	0.0023 (7)	0.0076 (8)	-0.0077 (8)
C13	0.0353 (9)	0.0323 (9)	0.0330 (9)	0.0015 (7)	0.0034 (7)	-0.0003 (7)
C14	0.0468 (11)	0.0484 (11)	0.0333 (10)	-0.0098 (9)	0.0136 (8)	-0.0078 (8)
C15	0.048 (2)	0.078 (3)	0.047 (2)	0.0041 (18)	0.0199 (15)	0.0108 (18)
C16	0.056 (2)	0.070 (2)	0.0278 (15)	-0.0027 (17)	0.0097 (14)	0.0037 (15)
C17	0.105 (4)	0.059 (2)	0.045 (2)	-0.023 (2)	0.032 (2)	-0.0254 (19)
C16'	0.081 (6)	0.077 (5)	0.063 (4)	-0.019 (4)	0.041 (4)	-0.001 (4)
C15'	0.095 (6)	0.103 (6)	0.036 (3)	0.056 (5)	0.024 (3)	0.003 (4)
C17'	0.069 (4)	0.073 (5)	0.036 (3)	0.006 (3)	0.002 (3)	-0.015 (3)
C18	0.0254 (8)	0.0258 (8)	0.0316 (8)	-0.0026 (6)	-0.0001 (6)	0.0012 (6)
C19	0.0251 (8)	0.0247 (7)	0.0236 (7)	-0.0008 (6)	0.0039 (6)	-0.0004 (6)
C20	0.0289 (9)	0.0296 (8)	0.0437 (10)	-0.0010 (6)	-0.0107 (7)	0.0043 (7)
C21	0.0303 (9)	0.0272 (8)	0.0476 (11)	-0.0054 (6)	-0.0080 (7)	0.0018 (7)
C22	0.0273 (8)	0.0250 (7)	0.0243 (8)	0.0017 (6)	0.0041 (6)	-0.0007 (6)
C23	0.0271 (9)	0.0309 (9)	0.0548 (11)	0.0012 (7)	-0.0097 (8)	0.0059 (8)
C24	0.0260 (8)	0.0303 (9)	0.0538 (11)	-0.0057 (7)	-0.0074 (7)	0.0032 (8)
C25	0.0382 (9)	0.0248 (8)	0.0316 (9)	0.0022 (7)	0.0056 (7)	0.0022 (7)
C26	0.0454 (11)	0.0331 (9)	0.0576 (12)	-0.0072 (8)	0.0028 (9)	0.0099 (9)
C27	0.0487 (12)	0.0408 (10)	0.0525 (12)	0.0016 (9)	-0.0011 (9)	0.0176 (9)
C28	0.1005 (19)	0.0285 (9)	0.0493 (12)	0.0113 (10)	0.0287 (12)	0.0019 (9)

Geometric parameters (Å, °)

N1—C7	1.3816 (19)	C17—H17A	0.9600
N1—C1	1.386 (2)	C17—H17B	0.9600
N1-C18	1.4571 (19)	C17—H17C	0.9600
N2—C7	1.327 (2)	C16'—H16D	0.9600
N2—C6	1.390 (2)	С16'—Н16Е	0.9600
C1—C2	1.393 (2)	C16'—H16F	0.9600
C1—C6	1.398 (2)	C15'—H15D	0.9600
C2—C3	1.382 (2)	C15'—H15E	0.9600
С2—Н2В	0.9300	C15'—H15F	0.9600
C3—C4	1.397 (3)	C17'—H17D	0.9600
С3—НЗА	0.9300	С17'—Н17Е	0.9600
C4—C5	1.381 (2)	C17'—H17F	0.9600
C4—H4A	0.9300	C18—C19	1.518 (2)
С5—С6	1.402 (2)	C18—H18A	0.9700
С5—Н5А	0.9300	C18—H18B	0.9700
С7—С8	1.471 (2)	C19—C20	1.382 (2)

C8—C13	1.395 (2)	C19—C24	1.385 (2)
C8—C9	1.397 (2)	C20—C21	1.392 (2)
C9—C10	1.390 (2)	C20—H20A	0.9300
С9—Н9А	0.9300	C21—C22	1.387 (2)
C10—C11	1.389 (2)	C21—H21A	0.9300
C10—H10A	0.9300	C22—C23	1.387 (2)
C11—C12	1.397 (3)	C22—C25	1.535 (2)
C11—C14	1.536 (2)	C23—C24	1.389 (2)
C12—C13	1.383 (2)	C23—H23A	0.9300
C12—H12A	0.9300	C24—H24A	0.9300
C13—H13A	0.9300	C25—C28	1.528 (2)
C14—C17'	1.463 (6)	C25—C27	1.530 (2)
C14—C16'	1.465 (7)	C25—C26	1.534 (2)
C14—C15	1.498 (4)	C26—H26A	0.9600
C14—C17	1.508 (4)	C26—H26B	0.9600
C14—C16	1.601 (4)	C26—H26C	0.9600
C14—C15'	1.650 (6)	C27—H27A	0.9600
C15—H15A	0.9600	С27—Н27В	0.9600
C15—H15B	0.9600	С27—Н27С	0.9600
C15—H15C	0.9600	C28—H28A	0.9600
C16—H16A	0.9600	C28—H28B	0.9600
C16—H16B	0.9600	C28—H28C	0.9600
C16—H16C	0.9600		
C7—N1—C1	106.40 (13)	C14—C17—H17A	109.5
C7—N1—C18	129.74 (13)	С14—С17—Н17В	109.5
C1—N1—C18	123.86 (13)	H17A—C17—H17B	109.5
C7—N2—C6	105.05 (13)	С14—С17—Н17С	109.5
N1—C1—C2	131.48 (15)	H17A—C17—H17C	109.5
N1—C1—C6	105.77 (13)	H17B—C17—H17C	109.5
C2—C1—C6	122.70 (15)	C14—C16'—H16D	109.5
C3—C2—C1	116.56 (16)	C14—C16'—H16E	109.5
С3—С2—Н2В	121.7	H16D—C16'—H16E	109.5
C1—C2—H2B	121.7	C14—C16'—H16F	109.5
C2—C3—C4	121.47 (16)	H16D—C16'—H16F	109.5
С2—С3—НЗА	119.3	H16E—C16'—H16F	109.5
С4—С3—НЗА	119.3	C14—C15'—H15D	109.5
C5—C4—C3	121.94 (16)	C14—C15'—H15E	109.5
C5—C4—H4A	119.0	H15D—C15'—H15E	109.5
C3—C4—H4A	119.0	C14—C15'—H15F	109.5
C4—C5—C6	117.44 (16)	H15D—C15'—H15F	109.5
С4—С5—Н5А	121.3	H15E—C15'—H15F	109.5
С6—С5—Н5А	121.3	C14—C17'—H17D	109.5
N2—C6—C1	110.16 (13)	C14—C17'—H17E	109.5
N2—C6—C5	129.95 (15)	H17D—C17'—H17E	109.5
C1—C6—C5	119.88 (15)	C14—C17'—H17F	109.5
N2	112.61 (14)	H17D—C17'—H17F	109.5
N2—C7—C8	121.68 (14)	H17E—C17'—H17F	109.5
N1—C7—C8	125.63 (14)	N1—C18—C19	113.43 (12)
C13—C8—C9	117.69 (15)	N1—C18—H18A	108.9

C13—C8—C7	117.42 (14)	C19—C18—H18A	108.9
C9—C8—C7	124.78 (14)	N1-C18-H18B	108.9
C10—C9—C8	120.65 (16)	C19-C18-H18B	108.9
С10—С9—Н9А	119.7	H18A—C18—H18B	107.7
С8—С9—Н9А	119.7	C20—C19—C24	117.44 (14)
C11—C10—C9	121.88 (16)	C20-C19-C18	122.86 (14)
C11-C10-H10A	119.1	C24—C19—C18	119.67 (14)
C9—C10—H10A	119.1	C19—C20—C21	121.05 (15)
C10-C11-C12	117.05 (15)	C19—C20—H20A	119.5
C10-C11-C14	122.04 (17)	C21—C20—H20A	119.5
C12-C11-C14	120.91 (16)	C22—C21—C20	122.13 (15)
C13—C12—C11	121.63 (16)	C22—C21—H21A	118.9
C13—C12—H12A	119.2	C20—C21—H21A	118.9
C11—C12—H12A	119.2	C23—C22—C21	116.09 (14)
C12—C13—C8	121.10 (16)	C23—C22—C25	122.07 (14)
С12—С13—Н13А	119.5	C21—C22—C25	121.83 (14)
C8—C13—H13A	119.5	C22—C23—C24	122.19 (15)
C17'—C14—C16'	115.7 (5)	С22—С23—Н23А	118.9
C17'—C14—C15	138.4 (3)	C24—C23—H23A	118.9
C16'—C14—C15	54.3 (4)	C19—C24—C23	121.07 (15)
C17'—C14—C17	46.3 (3)	C19—C24—H24A	119.5
C16'—C14—C17	143.7 (3)	C23—C24—H24A	119.5
C15—C14—C17	114.0 (3)	C28—C25—C27	109.18 (16)
C17'—C14—C11	110.5 (3)	C28—C25—C26	109.07 (16)
C16'—C14—C11	107.9 (3)	C27—C25—C26	107.14 (15)
C15—C14—C11	110.84 (19)	C28—C25—C22	108.57 (14)
C17—C14—C11	108.26 (19)	C27—C25—C22	111.76 (14)
C17'—C14—C16	62.4 (3)	C26—C25—C22	111.08 (14)
C16'—C14—C16	56.3 (4)	C25—C26—H26A	109.5
C15-C14-C16	106.1 (2)	C25—C26—H26B	109.5
C17—C14—C16	106.3 (3)	H26A—C26—H26B	109.5
C11—C14—C16	111.34 (18)	С25—С26—Н26С	109.5
C17'—C14—C15'	106.7 (4)	H26A—C26—H26C	109.5
C16'—C14—C15'	106.2 (5)	H26B—C26—H26C	109.5
C15—C14—C15'	53.6 (4)	С25—С27—Н27А	109.5
C17—C14—C15'	64.1 (4)	С25—С27—Н27В	109.5
C11—C14—C15'	109.8 (2)	H27A—C27—H27B	109.5
C16—C14—C15'	138.6 (3)	С25—С27—Н27С	109.5
C14—C15—H15A	109.5	H27A—C27—H27C	109.5
C14—C15—H15B	109.5	H27B—C27—H27C	109.5
H15A—C15—H15B	109.5	C25—C28—H28A	109.5
C14—C15—H15C	109.5	C25—C28—H28B	109.5
H15A—C15—H15C	109.5	H28A—C28—H28B	109.5
H15B—C15—H15C	109.5	C25—C28—H28C	109.5
C14—C16—H16A	109.5	H28A—C28—H28C	109.5
C14—C16—H16B	109.5	H28B—C28—H28C	109.5
C14—C16—H16C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C18—H18A…N2 ⁱ	0.97	2.59	3.553 (2)	174
Symmetry codes: (i) $x-1$, y , z .				

Fig. 1